Fake candles, and flame algorithms

The Birch Books LEGO set that I have been modifying has an interesting “fireplace” at the first floor of the townhouse. I have been wanting to wire that up to light up for the evening scenes in my smart lighting board, but I want it to look at least a bit realistic. But how do you do that?

As I previously noted, there’s flame effect LED lamps out there, which were looked at by both bigclive and Adam Savage, this very year. But those are way too big for the scale we’re talking about here. Simplifying this too much, you can think of those lamps as round, monochrome LED panels showing a flame animation, like an old DOS demo. Instead what I have to work with is going to be at most two LEDs — or at least two independent channels for the LEDs.

Thankfully, I didn’t have to look far to find something to learn from. A few months ago a friend of my wife gave us as a present a very cute candle holder, but since we’re renting, that’s not really a good idea. Instead I turned on Amazon (but AliExpress would have done the trick just as well) for some fake candles (LED Candles) that would do the trick. These are interesting because they are not just shaped like a candle, but they have a flickering light like one as well. Three of them in the holder fit fairly nicely and did the trick to give a bit of an atmosphere to our bedroom.

I was full ready to sacrifice one of the candles to reverse engineer it, but the base comes off non-destructively, and that the board inside is very easy to follow. Indeed, you can see the schematic of the board here on the right (I omitted the on/off switch for clarity), even though the board itself has space for more components. The whole of the candle is controlled by a microcontroller, with a PIC12F-compatible pinout (but as Hector pointed out, much more likely to be some random chinese microcontroller instead).

It’s interesting to note that the LED starts in “candle” mode once turning the switch to the “on” position, without using the remote control. My guess is that if you buy one of the versions that does not come with a remote control, you can add that functionality by just soldering a TSOP381x decoder. It also shows why the battery on these things don’t really last as long as you may want it to, despite using the bigger, rarer and more expensive CR2450 batteries. The microcontroller is powered up all the time, waiting to decode some signal from the remote control, even if the LED is off. I wanted to record the current flowing through in standby, but it’s fairly hard to get the battery in series with the multimeter — maybe I should invest on a bench supply for this kind of work.

So how does this all work? The LED turns out to be a perfectly normal warm white LED, with a domed form factor that fits nicely in the carved space in the fake candle itself, and that helps it diffuse it. To produce the flame effect, the microcontroller uses PWM (pulse-width modulation) — which is a pretty common way to modulate intensity of LEDs, and the way most RGB LEDs work to produce combined colours, just like on my insulin reminder. Varying the duty cycle (the ratio between “high” and “low” of the digital line) allows changing the intensity of the light (or of the specific colour for RGB ones). If you keep varying the duty cycle, you get a varying intensity that simulates a flame.

The screenshot you can see is from Saleae Logic software. It shows the variable duty cycle in span of a few seconds, and it’s pretty much unreadable. It’s possible that I can write code for a decoder in the Saleae logic, and export the actual waveform it uses to simulate the flickering of a flame — but honestly that sounds a lot of unjustified work: there’s not really “one” true flame algorithm, as long as the flickering looks the part, it’s going to be fine.

Example of a generated Perlin noise waveform for the LED flickering

So, how do you generate the right waveform? Well, I had a very vague idea of how when I started, but thanks to the awesome people in the Adafruit Discord (shout out to IoTPanic and OrangeworksDesign!) I found quite a bit of information to go by — while there are more “proper” way to simulate a fire, Perlin noise is a very good starting point for it. And what do you know? There’s a Python package for it which happens to be maintained by a friend of mine!

Now there’s a bit of an issue on how to properly output the waveform in PWM — in particular its frequency and resolution. I pretty much just thrown something at the wall, it works, and I’ll refine it later if needed, but the result is acceptable enough for what I have in mind, at least when it comes to just the waveform simulation.

The code I thrown at the wall for this is only going to be able to do the flickering. It doesn’t allow for much control and pretty much expects full control of the execution — almost the same as in the microcontroller of the original board, that literally turns off the moment the IR decoder receives (or thinks it’s receiving) a signal.

I was originally planning to implement this on the Adafruit M4 Express with PWMAudioOut — it’s not audio per-se, but it’s pretty much the same thing. But unfortunately it looks like the module needed for this is not actually built into the specific version of CircuitPython for that Feather. But now we’re in the business of productionizing code, rather than figuring out how to implement it.

Upcoming electronics projects (and posts)

Because of a strange alignment between my decision to leave Google to find a new challenge, and the pandemic causing a lockdown of most countries (including the UK, where I live), you might have noticed more activity on this blog. Indeed for the past two months I maintained an almost perfect record of three posts a week, up from the occasional post I have written in the past few years. In part this was achieved by sticking to a “programme schedule” — I started posted on Mondays about my art project – which then expanded into the insulin reminder – then on Thursday I had a rotating tech post, finishing the week up with sARTSurdays.

This week it’s a bit disruptive because while I do have topics to fill in the Monday schedule, they start being a bit more scatterbrained, so I want to give a bit of a regroup, and gauge what’s the interest around them in the first place. As a starting point, the topic for Mondays is likely going to stay electronics — to follow up from the 8051 usage on the Birch Books, and the Feather notification light.

As I have previously suggested on Twitter, I plan on controlling my Kodi HTPC with a vintage, late ’80s Sony SVHS remote control. Just for the craic, because I picked it up out of nostalgia, when I went to Weird Stuff a few years ago — I’m sad it’s closed now, but thankful to Mike for having brought me there the first time. The original intention was to figure out how the complicated VCR recording timer configuration worked ­— but not unexpectedly the LCD panel is not working right and that might not be feasible. I might have to do a bit more work and open it up, and that probably will be a blog post by itself.

Speaking of Sony, remotes and electronics — I’m also trying to get something else to work. I have a Sony TV connected to an HDMI switcher, and sometimes it get stuck with the ARC not initializing properly. Fixing it is relatively straightforward (just disable and re-enable the ARC) but it takes a few remote control button presses… so I’m actually trying to use an Adafruit Feather to transmit the right sequence of infrared commands as a macro to fix that. Which is why I started working on pysirc. There’s a bit more than that to be quite honest, as I would like to have a single-click selection of inputs with multiple switchers, but again that’s going to be a post by itself.

Then there’s some trimming work for the Birch Books art project. The PCBs are not here yet, so I have no idea if I have to respin them yet. If so, expects a mistakes-and-lessons post about it. I also will likely spend some more time figuring out how to make the board design more “proper” if possible. I also still want to sit down and see how I can get the same actuator board to work with the Feather M0 — because I’ll be honest and say that CircuitPython is much more enjoyable to work with than nearly-C as received by SDCC.

Also, while the actuator board supports it, I have currently left off turning on the fireplace lights for Birch Books. I’m of two minds about this — I know there are some flame effect single-LEDs out there, but they don’t appear to be easy to procure. Both bigclive and Adam Savage have shown flame-effect LED bulbs but they don’t really work in the small scale.

There are cheap fake-candle LED lamps out there – I saw them the first time in Italy at the one local pub that I enjoy going to (they serve so many varieties of tea!), and I actually have a few of them at home – but how they work is by using PWM on a normal LED (usually a warm light one). So what I’m planning on doing is diving into how those candles do that, and see if I can replicate the same feat on either the 8051 or the Feather.

I don’t know when the ESP32 boards I ordered will arrive, but probably will spend some time playing with those and talking about it then. It would be nice to have an easy way to “swap out the brains” of my various projects, and compare how to do things between them.

And I’m sure that, given the direction this is going, I’ll have enough stuff to keep myself entertained outside of work for the remaining of the lockdown.

Oh, before I forget — turns out that I’m now hanging out on Discord. Adafruit has a server, which seems to be a very easygoing and welcoming way to interact with the CircuitPython development team, as well as discussing options and showing off. If you happen to know of welcoming and interesting Discord servers I might be interested in, feel free to let me know.

I have not forgotten about the various glucometers I acquired in the past few months and that I still have not reversed. There will be more posts about glucometers, but for those I’m using the Thursday slot, as I have not once gone down to physically tapping into them yet. So unless my other electronics projects starve out that’s going to continue that way.

Insulin, routine, lockdown, and electronics

As you may know if you read this blog, I have insulin-dependent diabetes. In particular, I use both fast and long acting insulin, which basically means I need to take a shot of insulin every morning (at around the same time, but there’s at least a bit of leeway around it).

This is not usually a problem: the routine of waking up, getting ready to leave, making a coffee and either drinking it or taking it with me makes it very hard to miss the step “taking the insulin”. Unfortunately, like for many others, this routine is gone out of the window due to the current lockdown. Maybe a bit worse for me since I’m currently still between jobs, which means I don’t even have the routine of logging in to work form home, and of meetings.

What this meant, is that days blurred together, and I started wondering if I remembered to take my insulin in the morning. A few too many times that answer was “I don’t know”, and I think at least twice in the past couple of weeks I did indeed forget. I needed something to make it easier to remember and not to forget.

Because insulin injections tend to be one of those things that I do “in autopilot”, I needed something hard to forget to do. Theoretically, the Libre App allows annotating that you took long-acting insulin (and how much) but that requires me to remember to scan my sensor right after and write down that I did. It’s too easy to forget. I also wanted something that would be a lot more explicit about telling me (and my wife) that I forgot to tell my insulin. And hopefully something that I wouldn’t risk telling I took my insulin too soon in the interaction, and then not actually doing the right thing (as sometimes I reach out for my insulin pen, realise there’s not enough insulin there, and need to pick up a new one from the fridge).

The Trigger: Yes, I Took My Insulin

The first thing I decided to do was to use the spare Flic Button. I bought Flics last year upon suggestion of Luke, and they actually helped immensely — we have one in the study and one in the bedroom, to be able to turn on the smart lights quietly (in the night) and without bothering with the phone apps. We kept a third one “spare”, not quite sure what to use it for until now. The button fits on the back of the cabinet where I keep my “in use” insulin pen. And indeed, it’s extremely easy and obvious to reach while putting the pen down — as an aside, most European insulin pens fit perfectly on a Muji 3-tier slanted display, which is what I’ve been using to keep mine in.

This is not exactly the perfect trigger. The perfect trigger wouldn’t require an action outside of the measured action — so in a perfect world, I would be building something that triggers when I throw an used needle into the needle container. But since that’s a complex project for which I have no obvious solution, I’ll ignore that. I have a trigger, it doesn’t risk getting too much in my way. It should be fine.

But what should the trigger do? The first idea I had was to use IFTTT to create a Google Calendar event when I pressed the button. It wouldn’t be great for notifying if I forgot the insulin, but it would at least allow me to keep track of it. But then I had another idea. I had a spare Adafruit Feather M4 Express, including an AirLift FeatherWing coprocessor for WiFi. I originally bought it to fix an issue with my TV (which I still have not fixed), and considered using it on my art project, but it also has a big bright RGB LED on it (an AdaFruit NeoPixel), which I thought I would use for notifications.

A quick Flask app later, and I had something working — the Flic button would hit one endpoint on the web app, which would record me having taking my insulin, while the Feather would be requesting another endpoint to know how to reconfigure the LED. The webapp would have the logic to turn the LED either red or quiescent depending on whether I got my insulin for the day. There’s a bit of logic in there to define “the day”, as I don’t need the notification at 1am if I have not gone to bed yet (I did say that my routine is messed up didn’t I?) but that’s all minor stuff.

The code for the webapp (Python, Flask) and the Feather (CircuitPython) I pushed to GitHub immediately (because I can), but there’s no documentation for it yet. It also doesn’t use the NeoPixel anymore, which I’ll explain in a moment, so you may not really be able to use it out of the box as it is.

For placement, I involved my wife — I want her to be able to tell whether I didn’t take my insulin, so if I’m having a “spaced out day”, she can remind me. We settled for putting it in the kitchen, close to the kettle, so that it’s clearly visible when making coffee — something we do regularly early in the morning. It worked out well, since we already had an USB power supply in the kitchen, for the electric cheese grater I converted.

Limitations of the Feather Platform.

The Feather platform by itself turned out to be a crummy notification platform. Don’t get me wrong, the ease of using it is extremely nice. I wrote the CircuitPython logic in less than an hour, and that made it very nice. But if you need a clear LED to tell you whether something was done or not, you can’t just rely on the Feather. Or at least not on the Feather M4 Express. Yes it comes with a NeoPixel, but it also comes with two bright, surface-mount LEDs by the sides of the USB connector.

One of the two LEDs is yellow, and connected to the optional LiPo battery charging circuitry, and according to the documentation it’s expected to “flicker at times” — as it turns out, it seems to be continuously flickering for me, to the point at first I thought it was actually the RX/TX notification on the serial port. There’s also a red LED which I thought was just the “power” LED — but that is actually controlled by a GPIO on the board, except it’s pulled high (so turned on) when using the AirLift Wing.

The battery charging LED does appear to behave as documented (only at times flickering) on the M0 Express I ended up getting in addition to the M4. But since that is not compatible with the AirLift (at least using CircuitPython), it might just be that this is also a side-effect of using the AirLift.

Why am I bringing up these LEDs? Well, if you want a notification light that’s either red-or-off, having a bright always-on red LED is a bad idea. Indeed, a day after setting it up this way, my wife asked me if I took my insulin, because she saw the red light in the corner. Yeah it’s too bright — and easy to confuse for the one that you want to check out for.

My first reaction was to desolder the two LEDs — but I have hardly ever desoldered SMD components, and I seem to have fallen for the rookie mistake of trying to desolder them with a solder iron rather than a hot air gun, and actually destroyed the microUSB connector. Oops. A quick order from Mouser meant I had to wait a few days to go back playing with the Feather.

A Better, Funnier Light

This turned out to be a blessing in disguise as it forced me to take a few steps back and figure out how to make it less likely to confuse the LEDs, beside trying to glue them down with some opaque glue. So instead, I figured out that there’s plenty of RGB LED lamps out there — so why not using those? I ordered a cheap Pikachu from Amazon, which delivered about at the same time as Mouser. I knew it was probably coming from AliExpress (and, spoilers, it pretty much did — only the cardboard looked like printed for the UK market by a domestic company), but ordering it at the source would have taken too long.

The board inside turned out to be fairly well organised, and it was actually much easier to tap into it than expected — except for me forgetting how transistors work, and bridging to the wrong side of the resistor to try turning on the LEDs manually, thus shorting and burning them. I ended up having to pretty much reimplement the same transistor setup outside of the board, but if you do it carefully, you only need three GPIO lines to control the lamp.

The PCB from the RGB LED light I bought. Very well organised. If you want to pair it to a MCU to control it, remove the crossed out IC, then tap into the blue-marked connections. Pay attention to the side of the resistor you connect this on!

The LED colour can be varied by PWM, which is fairly easy to do with CircuitPython. You only need to be careful with which GPIO lines you use for it. I used “random” lines when testing on the breadboard, but then wanted to tidy it up using lines 10, 11, and 12 on the finalized board — turns out that line 10 does not appear to have timer capabilities, so you can’t actually use it for PWM. And also, lines 11 and 12 are needed for the AirLift — which means the only lines I could use for this were 5, 6 and 9.

At this point, I had to change the webapp so that instead of turning the LED off to signify I took my insulin, it would instead turn the LEDs yellow, to have a bright and happy Pikachu on the kitchen counter. And an angry red one in the morning until I take my insulin.

Of course to be able to put the lamp in the kitchen next to the kettle, I had to make sure it wouldn’t be just a bunch of boards with cables going back and forth. So first of all, I ended up wiring together a Feather Doubler — which allows a feather (and a wing) to sit side-by-side. The doubler has prototype areas in-between the connectors, which were enough to solder in the three transistors and three resistors — you won’t need those if you don’t burn out the original transistors either!

Unfortunately, because I had stacking headers on my AirLift, even with the cover off, the lamp wouldn’t sit straight. But my wife got the idea of turning the cover inside out, using the space provided by the battery compartment, which worked actually fairly good (it requires some fiddling to make it stable, and I was out of Sugru glue to build a base for it, but for now it’ll work).

Following Up: Alternative Designs and Trimmings

So now I have a working notification light. It works, it turns red in the morning, and turns back yellow after I click the button to signal I took my insulin. It needs a webapp running – and I have been running this on my desktop for now – but that’s good enough for me.

Any improvement from here is pretty much trimming, and trying something new. I might end up getting myself another AirLift and solder the simpler headers on it, to make the profile of the sandwiched board smaller. Or if I am to remake this from an original lamp with working transistors, I could just avoid the problem of the doubler — I would only need GPIO wirings, and could use the prototyping space next to the M4 Express to provide the connection.

I did order a few more lamps in different styles from AliExpress — they will take their due time to show up, and that’s okay. I’ll probably play with them a bit more. I ordered one that (probably) does not have RGB LEDs — it might be interesting to design a “gut replacement” board, that just brings in new LEDs altogether. I ordered one that has “two-colour” images, which likely just means it has two sets of LEDs. I’ll be curious to see how those look like.

I also ordered some ESP32-based “devkits” from AliExpress — this is the same CPU used in the AirLift wing as a WiFi co-processor only, but it’s generally powerful enough that it would be able to run the whole thing off a single processor. This might not be as easy as it sounds to prototype, particularly given that I’m not sure I can just provide the 5V coming from the lamp’s connector to the ESP board (ESP32 uses 3.3V), and I burnt the 3.3V regulator on the lamp’s original board. Also since I need the transistor assembly, I would have to at least get a prototype board to solder everything on and — well, it might just not work out. Still nice to have them in a drawer though.

While I don’t have a 3D printer, and I’m not personally interested in having one at home, and I’m also not going into an office, which may or may not have one (old dayjob did, new dayjob I’m not sure), I might also give a try to software to design a “replacement base” that can fit the Feather, and screw into the rest of the lamp that is already there. It might also be a starting point for designing a version that works with the ESP32 — for that one, you would need the microUSB port from the USB module rather than the one present in the lamp, to go through the on-board regulator. This one is just for the craic, as my Irish friends would say, as I don’t expect that to be needed any time soon.

All in all, I’m happy with what I ended up with. The lamp is cute, and doesn’t feel out of place. It does not need to broadcast to anyone but me and my wife what the situation is. And it turns out to be almost entirely based on Python code that I just released under MIT.

My new friend who reminds me to look after myself!

Art Project Completion: Lighted Up Birch Books

The first Birch Books scene

I started talking about my quarantine (or, well, lockdown) art project at the end of March, with a plan. I did manage to (mostly) complete it by the end of April, while the lockdown (and my sabbatical) are still in full swing.

I have shared some work in progress pictures over on Twitter, including a 2-minutes video (shot on my phone by hand, so not very high-quality) showing the full set of scenes (before the latest “firmware revision”). As you can see from all those pictures, the cables are still pretty much in the way and very visible. That’s not something I have addressed yet, but I’m waiting for the PCBs to arrive before doing that.

At the end, the result is that throughout the building there are 12 bright white LEDs, connected via Dupont connectors to a harness that then goes into the breadboard — that’s so that the harness can disappear the moment I have the PCBs.

For the PCBs, I think I made a rookie mistake. I ordered them from PCBWay (affiliate link), as I heard good about them on the tubes, and they seemed to have a good price point even for assembly of the SMD versions. That was not the mistake. The mistake was to send a single order with both the SMT and the through-hole PCBs, to save on shipping. I’m now having to wait until the end of this month to receive the boards, and hope I didn’t make any more mistakes on them.

I’m also sure that there will be changes I’ll need to make. These are literally the first printed circuit boards that I design, and beside obvious stylistic mistakes (such as not marking the value of components), I’m sure there’s more mistakes than that. So I expect I’ll have to update the designs later on. Hopefully it won’t get a mess of bodge wires when I try to use it properly.

I think it might be dinner time.

I have to figure out how to fit all of this into a box, eventually. Probably a Lego box of some kind. And I’ll probably have to make sure that the USB plug is fit properly. Soldering a microUSB connector on a PCB is… not easy and not something I’m looking forward to. That’s why I added a 5-pin header on the design, so I can use one of the cheap breakout boards you can find all over on AliExpress or eBay.

The 8051 based firmware is available on the same GitHub repository, and it includes a full 16-scenes (although not unique scene) schedule that now runs in about one minute.

I also changed the “boot test” mode in the second “firmware revision”: instead of trying to turn on each LED one by one, it turns on each room one by one. The reason why I did that, is that I have hooked up multiple Darlington gates through a joint to provide more current for a couple of rooms that have three LEDs on the same room. This might have been a bit of a mistake and I should probably rewire those rooms to just use multiple LEDs, but that’s not going to happen any day now.

Also, with a bit of a hindsight, I should probably have just left the current-limiting resistors off the actuator board altogether. While the resistor networks are great to simplify the design, I could have just as easily soldered the resistors inline on the cable and wrapped them with heatshrink. I know because I did exactly that on another Lego set, when I realised that powering it directly from a 5V supply was significantly overheating one of the two LEDs.

This is, by the way, another “trick” learnt while watching bigclive on YouTube. Probably not something that would be worth a complete video on, and maybe something that felt fairly natural and not required to explain to him but… something I’m very happy to have learnt. Which is why I love rambling on about small choices in my thought process, as it’s very possible that something that is natural and obvious to me, is not for someone else reading me. And why I do welcome comments asking for clarification on points I may be glossing over.

Also, both my wife and my mother have been pushing me to figure out what the next Lego model I will be adding lights to is going to be. I don’t honestly know, right now. But I guess the lessons learnt with this model should allow me to step up to something a bit more complicated next time. For sure, it would be a cheaper and easier job, since I procured a lot of tools for it anyway.

I think that the things I will consider changing for next time are not just the place the current-limiting resistors are connected (which I can probably retro-fit on the current PCBs), but also the type of wiring I use for the LEDs. I used equipment wire for this build, and it turns out to be fairly stiff and unwieldy. If I were to re-do this, or do it to another model, I would probably use the equipment wire only within the rooms themselves (that way I can push it out of the way), and then solder it just outside the model with a stranded, softer wire.

I think this will probably be the end of the regularly scheduled updates on my art project, at least until the PCBs arrive. I did intend to draw some documentation with a tool like Fritzing, which is used by Adafruit for their documentation, but I’m having quite a few headaches even figuring out how to set it up. None of the components I need are part of their parts libraries, and the documentation is out of date regarding the parts editor, so don’t hold your breath.

Birch Books: 8051 and Yak Shaving

I have previously discussed my choice of splitting the actuator board, pointing out I’ll probably try designing an alternative controller board using something like the Adafruit Feather M4 and writing the firmware with CircuitPython. Part of the reason for that is that it’s just easier, but part of it is because 8051 is an annoying platform to work with.

There are a few different compilers for this platform, but as far as I know, the only open-source and maintained one is SDCC the Small Device C Compiler. I hadn’t used this in forever, but I was very happy to see a new release this year, including C2X work in progress, and C11 (mostly) supported, so I was in high spirits when I started working on this.

A Worrying Demonstration

I started from a demo that was supposed to be written explicitly for the STC89. The first thing I noted was that the code does not actually match the documentation in the same page, it references a _sdcc_external_startup() function that is not actually defined. On the other hand it does not seem to be required. There’s other issues with the code, and for something that is designed to work with the STC89, it seems to be overly complicated. Let me try to dissect the problems.

First of all, the source code is manually declaring the “Special Feature Registers” (SFR) for the device. In this case I don’t really understand the point, since all of the declared registers are part of the base 8051 architecture, and would be already declared by any of the model-specific header files that SDCC provides. While the STC89 does have a number of registers that are not found otherwise, none of those are used here. In my code I ended up importing at89x52.h, which is meant for the Atmel (now Microchip) AT89 series, which is the closest header I found for the STC89. I have since filed a patch with a header written based on other headers and the datasheet.

Side note: the datasheet is impressive in the matter of detail. It includes everything you may want to know, including the full ISA description, and a number of example cases.

Once you have the proper definition of headers, you can also avoid a lot of binary flag logic — the most important registers on the 8051 chips are bit-addressable, and so you don’t need to remember how many bits you need to shift around for you to set the correct flag to enable interrupts. And while you may be worrying that using the bit-addressed register would be slower: no, as long as you’re changing fewer than three bits on a register at a time, setting them with the bit-addressed variant is the same or faster. In the case of this demo, the original code uses two orl instructions, each taking 2 cycles, to set three bits total — using the setb instruction, it’s only going to take 3 cycles.

Once you use the correct header (either my contributed stc89c51rc.h, the at89x52.h, or even the very generic 8052.h), you have access to other older-than-thirty-years features that weren’t part of the original 8051, but were part of the subsequent 8052, which both the STC89 and AT89 series derive off. One of these features, as even Wikipedia knows, is a third 16-bit timer. This is important to the demo, since it’s effectively just an example of setting up a timer to “[set] up and using an accurate timer”.

Indeed, the code is fairly complicated, as it configures the timer both in main() and in the interrupt handler clockinc(). The reason for that is that Timer 0 is configured in “Mode 0”: the timer register is configured as 13-bit (with the word TH0, TL0), its rollover causes an interrupt, but you need to reload the timer afterwards. The reason for that is that you need more than 8 bit to set the timer to fire at 1kHz (once every millisecond), and while Timer 0 supports “automatic reload”, it only supports 8-bit reload values — since it’s using TH0 for the reload value.

8052 derivative support a third timer (Timer 2), which is 16-bit, rather than 8- or 13-bit. And it supports auto-reload at 16-bit through RCAP2H, RCAP2L. The only other complication is that unlike Timer 0 and Timer 1, you need to manually “disarm” the interrupt flag (TF2), but that’s still a lot less code.

I found the right way to solve this problem on Google Books, on a book that does not appear to have an ebook edition, and that does not seem to be in print at all. The end result is the following, modified demo.

// Source code under CC0 1.0
#include <stdbool.h>
#include <mcs51/8052.h>

volatile unsigned long int clocktime;
volatile bool clockupdate;

void clockinc(void) __interrupt(5)
{
        TF2 = 0;  // disarm interrupt flag.
	clocktime++;
	clockupdate = true;
}

unsigned long int clock(void)
{
	unsigned long int ctmp;

	do
	{
		clockupdate = false;
		ctmp = clocktime;
	} while (clockupdate);
	
	return(ctmp);
}

void main(void)
{
	// Configure timer for 11.0592 Mhz default SYSCLK
	// 1000 ticks per second
	TH2 = (65536 - 922) >> 8;
	TL2 = (65536 - 922) & 0xFF;
        RCAP2H = (65536 - 922) >> 8;
        RCAP2L = (65536 - 922) & 0xFF;
	
        TF2 = 0;
        ET2 = 1;
        EA = 1;
        TR2 = 1; // Start timer

	for(;;)
		P3 = ~(clock() / 1000) & 0x03;
}

I can only expect that this demo was just written long enough ago that the author forgot to update it, because… the author is an SDCC developer, and refers to his own papers working on it at the bottom of the demo.

A Very Conservative Compiler

Speaking of the compiler itself, I had no idea of what a mess I would get myself into by using it. Turns out that despite the fact that this is de-facto the only opensource embedded compiler people can use for the 8051, it is not a very good compiler.

I don’t say that to drag down the development team, who are probably trying to wrestle a very complex problem space (the 8051’s age make its quirk understandable, but irritating — and the fact that there’s more derivatives than there’s people working on them, is not making it any better), but rather because it is missing so much.

As Philipp describes it, SDCC “has a relative conservative architecture” — I would say that it’s a very conservative architecture, given that even some optimisations that, as far as I can tell, are completely safe are being skipped. For example, doing var % 2 (which I was using to alternate between two test patterns on my LEDs) was generating code calling into a function implementing integer modulo, despite being equivalent to var & 1, which is implemented in the basic instructions.

Similarly, the compiler does not optimise division by powers-of-two ­— which means that for anything that is not a build-time constant you’re better off using bitwise operations rather than divisions — it’s another thing that I addressed in the demo above, even though there it does not matter, as the value is constant at build time.

Speaking of build-time constants — turns out that SDCC does not do constant propagation at all. Even when you define something static const, and never take its address, it’s emitted in the data section of the output program, rather than being replaced at build time where it’s used. Together with the lack of optimisation noted above, it meant I gave up on my idea of structuring the firmware in easily-swappable components — those would rely on the ability of the compiler to do optimisation passes such as constant propagation and inlining, but we’re talking about the lack of much lower level optimisation now.

Originally, this blog post also wanted to touch on the fact that the one library of 8051 interfaces I found hasn’t been touched in six years, has still a few failed merge markers, and not even parsing with modern SDCC — but then again, now that I know SDCC does not optimise even the most basic of operations, I don’t think using a library like that is a good idea — the IO module there is extremely complicated, considering that most ports’ I/O lines can be accessed with bit-addressed registers.

Now, as Andrea (Insomniac) pointed out, Philipp also has a document on using LLVM with SDCC — but the source code this is referencing is more than five years old, and relies on the LLVM C backend, which means it’s generating C code for SDCC to continue compiling. I do wonder if it would make sense to have instead a proper LLVM target for 8051 code — it’s beyond the amount of work I want to put on this project, but last year they merged AVR support into LLVM, which allows to use (or at least try) Rust on 8-bit controllers already. It would be interesting to see if 8051 cores could be used with something different than C (or manually written assembly).

You could wonder why am I caring this much for a side project MCU that is quite older than me. The thing is I don’t, really. I just seem to keep bumping around 8051/2 in various places. I nearly wrote a disassembler for it to hack at my laptop’s keyboard layout a few years ago. I still feel bad I didn’t complete that project. 8051 is still an extremely common micro in low-power applications, and the STC89 in particular is possibly the cheapest micro you can set up prototypes at home: you can get 20 of them for less than 60p each from AliExpress, if you have the time to wait — I know, I just ordered a lot, just to have them around if I decide to do more with them now that I sort-of understand them. the manufacturer appears to make many multiple variants of them still, and I would be extremely surprised if you didn’t have a bunch of these throughout your home, in computers, dishwashers, washing machines, mice, and other devices that just need some cheap and cheerful logic controller without breaking the bank. Heck, I expect them to be used in glucometers, too!

With all these devices tied to closed-source, proprietary compilers, I would feel more comfortable if there was some active work on supporting a modern compiler platform in the open source world as well. From my point of view, this sounds like the needs of the industrial users, and those of the hobbyist community, diverged very much on this topic.

Sum It All Up

So for my art project I decided that even SDCC is good enough, but I wanted to make sure I would not end up with broken code (which appears to happen fairly often), so I ended up reading the generated assembly code to make sure it made sense. Despite not being particularly familiar with 8051 ISA, thanks to the Wikipedia article and the detailed datasheet from STC, it wasn’t too hard to read through it.

While I was going through it, I also figured out how to rewrite parts of the C code to force SDCC to emit some decent code. For instance, instead of a branch that either adds 1 or 32 to a counter, I was better off making a temporary variable hold 1, or change it to 32, add that variable. The fact that SDCC couldn’t optimise that made me sad, but again it’s understandable given the priorities.

Hopefully I have kept the source code still fairly readable. You can check the history to see all the various things I kept changing to make it more readable in assembly as well. Part of the changes meant changing some of my plans. In my first notes I wanted to run through 20 “hours” configurations in 60 minutes — but to optimise the code I decided that it’ll run 16 “hours” in just over 68 minutes. That way I could use a lot of power-of-twos and do away with annoying calculations.

Birch Books MCU Selection

A couple of people have asked me why I started the art project down the path of using an 8051 MCU, which is a fairly old microcontroller (heck, I found out I looked at those chips back in 2006!), rather than using one of the more modern hacker/maker solutions such as Arduino. The answer I already gave in that post: I had it already here.

I bought a devkit for it hoping to be able to hack on the LED heart I bought as a surprise for my wife on Valentine’s day, which was centered around the same micro. Now, with hindsight, that was silly: the board was explicitly marked with an AT89S52 name, which is a much more common chip, and probably one for which I could have found a devkit/programmer in much shorter time, but it turned out to be a nice exercise nonetheless.

Indeed, I ended up having to learn a lot more about this chip, its programming, and refreshing my (terrible) electronics understanding. And while this has been breaking my brain at times, it also stretched it to learn something new. I guess I now know how my wife is feeling while learning Python coming from a humanities background.

I had another micro at home. Some time ago I wanted to figure out how to send a certain sequence of infrared commands to my TV via Google Assistant (it’s a long story, sometimes my TV doesn’t initialize the audio return channel correctly), and I ended up buying (but never using) an Adafruit Feather M4 and an AirLift FeatherWing. I soldered the terminals and made sure they worked, but only played with it briefly.

The Feather comes with CircuitPython, a MicroPython implementation firmware, which actually is fairly nice to write simple logic for the microcontroller, and is very easy to deploy: you just need to copy the Python files in the virtual USB flash drive that appears when you connect the board to the computer. It also includes a very nice interactive Python shell you can use to experiment without needing to commit to code (yet). And with the AirLift you also get support for controlling remotely via WiFi, and setting up all kind of request handling.

On the other hand, the 8051 is a fairly complicated tool. The ISA has not had any refresh since 1980 for what I can tell, and that’s on purpose: binary and pin compatibility appears to be the main advantage on using 8051 derivatives chips (or cores on FPGA). You’d think that with that having stayed the same we would have very advanced toolchains for it, but you’d be wrong. As far as I can tell, the only maintained open-source compiler for this is SDCC, and even that barely just. You might have seen my rants about this on Twitter, and if not, fear not: I’ll write a post about it next week.

So why did I go for the 8051, which is significantly older, harder to write code for, harder to program (you either need a devboard, or make sure you provide the right ISP headers on the board), and with quite a few question marks on its availability?

Well, the Feather only has a few really general purpose I/O lines. While both the M4 and the ESP32 supposedly should have enough GPIO lines, the Feather is a specific configuration, that commits a lot of lines to specific usage, such as an I²C/SPI bus to communicate with different Feathers. The usual answer to this is to include something like the MCP23017, which is an I/O expander that you drive via the I²C bus. But as it turns out, not only I don’t have one of those at home, but even Adafruit appears to only sell it on an Expander Bonnet for the Raspberry Pi. I’m not sure why there’s no FeatherWing with it, despite the fact that they document how to use one with CircuitPython, and while I’m sure I could design one, or look for an unofficial one, it’s something I don’t want to get to right now.

On the other hand, 8051 and its clones come with a lot more GPIO lines, and most of those are uncommitted if you start from nothing. The DIP-40 packages have 32 lines, and if you don’t need to use external memory, you have at the very least 16 uncommitted lines. Of the other 16 lines, some are shared with other functions, including external hardware interrupts, serial port, and most in-system programming interfaces.

Now, theoretically it seems like the ESP32 chip also have quite a few GPIO lines, although I only counted 14 uncommitted lines on their QFN packages. I guess you can scavenge a few more lines by not using some of the features, but that might end up conflicting with the MicroPython interfaces anyway.

So yeah I will probably eventually move to a different design that includes the MCP23017. Maybe I’ll end up designing a Feather Base (if not a proper FeatherWing) for it after all, to prototype with the already designed (and sent to fab) actuator board. But that’s a story for another time.

Birch Books Controller and Actuation Boards

Now that I’m free from my previous employer’s open source releasing processes, I’ve finally decided to put ideas to the computer and figure out how to actually build the controller board, and its firmware. It does help that I’m still missing the crimping tool to add connectors to the LEDs so I can test them, and that I had to think things through a bit more before ordering chips.

First, I needed to figure out what interactions I would get. As I said in the previous post, the plan is to have a single pin pair per driven LED, even when LEDs would always switched on and off together. It just makes the layout much cleaner, particularly as then there’s no need to encode knowledge of the final layout into the electronics. The final count of LEDs I’m looking at is 13, and as I’m going to use two Darlington arrays (ULN2003), I rounded that up to 14. And just to have some extra, I decided to add a straight +5V pin on the final connector, just in case I decide to do something else with it later.

As the target micro (STC89C32/AT89S52 and similar chips) comes with four 8-bit ports, this means that using two ports only, I can add an additional two inputs, which fits with my needs: a button to toggle turning on all the LEDs at once (useful to take detailed photos), and one to “fast forward” — so that instead of waiting for X minutes to change scene, it would wait X/Y (numbers and timing still to be defined).

Choosing the ports turned out to be a bit more complicated than I would have expected. The reason for that is that I also wanted to keep track of how to flash the micros. While I do have a “programmer” board (which is actually an overall test board) for the STC micros, I wasn’t sure how it would look like once completed, and didn’t really feel like unsocketing the chip every time I wanted to make a change.

According to the two datasheets (STC89Cxx, AT89S52), both chips include “In-System Programming”, but they do it quite differently. The STC uses the UART (serial) line that is standard on the 8051 chips and forms part of P3. This is what stcgal uses to program the chips, and I have tested that it works with any serial adapter connected to the right pins. The Microchip version uses I²C instead, using the three upper lines of P1.

This means that, to keep the board as simple as I can, without using the same pin for two functions, I’m better off using the P0 and P2 ports — these are used for address and data busses, when using external memory with the 8051, but that’s not something I need, so they are easily dedicated to drive the I/O of the controller board. Annoyingly, in the 40-DIP version of the 8051 and compatible chips, P0 and P2 are, yes, on the same side of the chip, but also “bookended”: pin 32 is P0.7 (highest bit of P0), and pin 28 is P2.7, which means that to keep the outputs linear you either need to reverse them in software, or in hardware. I went for hardware, since EAGLE’s Autorouter can do that faster than I can do it in software.

I also got bitten by a quirk of the 8051: P0 is the only port that needs pull-up resistors! The I/O lines on P0 are tristate (On, Off, NC) and floating by default. I didn’t notice that before because obviously the devboard I’ve been using has them already. Thankfully, before ordering anything I wanted to try the whole set of components on a breadboard (pictured right), and found that out pretty quickly. There was a hint of this in the heart-shaped circuit I keep going back to: the LEDs on that board are all wired with common-anode, which effectively turn their resistor into the pull-up. I totally missed it, but I was in time to fix the board, and to order some resistor networks so that I don’t have to end up soldering 16 extra legs, but just 9.

Now as I was preparing this I also figured out that, if I do provide the ISP connectors for both AT and STC chips on the board itself (and at least it appears that the STC programming works the same way for other chips, including the STC12C5A60S2), I don’t need to limit myself to DIP chips — I can use a socket PLCC, or a surface-mount LQFP, and just program it on the board. So I tried to figure out how different would an SMD board would be — and realised that there’s effectively two parts to the board as I had been picturing it it in my mind: the controller, with the microUSB plug, the micro and its paraphernalia (crystal, RC net, etc.), and the ISP headers — and the actuator, which receive the signals to turn on and off the LEDs, and sends the button presses, and then translate those in the actual powering up via the Darlington arrays.

So what I ended up doing was designing two separate boards, connected with a straight 1×20 pin header, carrying the 16 I/O signals, and a few extras. In addition to the +5V and the ground, it carries an RST signal (which can be either consider the 17th I/O, or just wired straight into the micro’s reset line, like I did), allowing the whole board to be reset, without having to powercycle it, and it also carries a Vcc line.

Why the extra Vcc line? Well, as I’ll explain in a post next week (hopefully with more positive information rather than just the rant it would be now), I’ve been considering alternative MCUs as well, for the controller. Not least because the 8051 is a very strange thing to program. One of the chips I was considering was the ESP32, which is fairly cheap and easy to find in the market, since nearly anything “IoT” is using it, as it supports WiFi and Bluetooth out of the box, and can be used as a “co processor” as well. It turns out to have enough GPIO pins to not require a multiplexer, but it also uses 3.3V CMOS levels rather than the 5V TTL levels that I’ve been thinking in, for the 8051 version. And for that reason, I need to distinguish, in the actuation board, the supply used to power the LEDs on, and the logical High for the inputs.

This exercise was useful to also figure out that I was completely wrong in the board files I pushed originally! I had not paid enough attention to the ULN2003, and assumed it was a standard PNP transistor, but Darlingon arrays are NPN transistors. So LEDs will have to share the supply cable, and use multiple ground connections going through the Darlington. Again, this would lead to a common-anode design.

So now the boards are in the repository, even though they are probably terrible. There’s some basic documentation as well explaining the pin connections. There are two versions of the actuator board, one using SMD components and one using through-hole (PTH) — the reason is that I’m likely going to buy the prints from PCBWay (note: affiliate link, just in case), and they can manufacture the SMD version fully — but it will take 40 to 50 days. So I’m planning on having that manufactured for later, but in the meantime I wanted something I could prototype on — so the through-hole came later, as you can tell by the fact I realised I could put resistor networks between supply and anode, rather than between cathode and Darlington.

Once the designs are finalized and proven, in addition to having the EAGLE files out there, I will probably make the boards available for purchase on PCBWay’s Share&Sell — and any other sensible platform for that, if anyone is interested. I don’t really care for any revenue out of it, but I guess it would be the easiest way to make them available to the public at large.

Birch Books: Access Points

I already introduced my quarantine art project, and as I promised here comes the second blog post on the topic, just to keep my own running notes around.

First of all, I decided to at least (partially) follow the advice from Adam Savage in his biography, about making lists and planning carefully. Indeed, I decided to write on paper as much running notes as I could and I could make sense, particularly since, as I said in the previous post, I’m not really at ease with electronics and I’m just lost at most of the things that are needed for this project, truth be told. So shout out to my friend Srdjan for helping me keep an eye on the things that are required!

My picture trying to figure out where to access the model to get wires through.

One of the things I clearly needed to solve was the access point for the wires themselves. The cable I have at home (without me going and buying more) is “equipment wire” (I got this a couple of years back because it’s single-core and made my protyping on the breadboard easier), and it is 0.6mm in diameter. I’m sure I can probably look for thinner wire, like wire-wrapping wire, and it’ll be perfectly fine to run 5V/50mA. But unless I deem it’s going to be impossible to keep hidden the wire I already have, I don’t think I’ll be buying more wire just yet.

Because of the nature of the model, the easiest way to modify the set without it being too noticeable it’s on the sides — Birch Books is designed to fit together with other Creator kits, and can be connected together through the base. Indeed, the kit itself is composed of two buildings that are connected at the base, and otherwise perfectly independent. This would be a problem if I decided to buy more sets of Creators, but then again, let’s cross this when it comes.

I also want to make sure that I don’t have to modify the pieces coming from the original kit. While I’m sure all of those are replaceable, it’s easier to keep them aside, and modify other pieces. I bought myself a box of assorted bricks, and I was lucky to find a few pieces that were already the right colour and shape for what I need.

I have then started dividing the set into rooms, and then for each rooms figured out how many LEDs I want (and where) and how many independent control lines I want. My current design involves bringing either one or two wires in each room: where multiple LEDs are needed in a room, I can connect them in parallel, and where a room has multiple control lines, I can share the ground connection between them.

There’s another question that I needed answering and that would be what the interface between microcontroller and the LEDs would be. I settled for simple pin headers, similar to motherboard front-panel connections, and using Dupont connectors. I’m still uncertain on whether to follow the motherboard option of using pins on the board, and female headers on the LEDs, or go the more theoretical approach of using female headers on the side with actual power going through.

Awesome video by bigclive on crimping tools.

Also as an aside. If you ever decide, like me, to start crimping your own Dupont style connectors, don’t just get the first random crimping tool that Amazon Prime will deliver to you, like I did. Watch the awesome video by bigclive, and go for a better tool. I have been fighting with the one I bought for a whole day, until I watched the video, and the one I’ve been trying to use was one of those he dismissed immediately without even going into details for. I ordered the same IWISS he was using at the end. Your mileage may vary, but it’s worth considering that.

I’m still not sure what the final controller board will look like, but to make things easier for myself, my current design assumes that there’s going to be a single pin pair per LED, connected to a 47Ω resistor. This means that even for rooms with a single control line and three LEDs, I would end up crimping them into a 3×2 connector, wiring the three VCC lines together — as long as the GPIO lines are kept at the same state, this should mean that the current is provided and limited in the right amount I need for those LEDs.

Speaking of GPIO lines — part of the reason why I decided to stick to the STC89C32 that I had at hand was also because they come with quite a few GPIO lines. Indeed, the AT89S52 from Microchip also comes with 32 easily accessible GPIO lines, which is plenty for this project. Unfortunately, they don’t have particularly useful maximum current draw. The LEDs that I got here are fairly bright at 35mA, but not particularly so at less than 3mA that they are getting from the GPIO line as is, and even I/O expanders such as the MCP23016 have a limit of 25mA per line. So instead, I settled for adding transistors, or to be precise to add two ULN2003 Darlington arrays, giving me space to drive 14 LEDs (I only expect 13 of them to be used).

In addition to the time-scheduled updates, I expect to want a button to “fast forward”, which allows me to show off the effects without having to stand around the kit for an hour — and a “full on” that works both as a way to test that everything is working, and as a way for me to take pictures easily.

I don’t have anything remotely sharable about that part of the work just yet. But hopefully soon I’ll be able to get drawings, pictures, or anything at all useful, and start sharing. Because if I didn’t think this horribly wrong, the board itself should be usable for many other configurations, just by programming something different on the micro using the same base software. And as I said previously, I think I’ll try turning around a number of different designs, just for the sake of it.

Quarantine Project: Birch Books Smart Home

By now, everybody knows we’ll be spending a few more weeks closed up in our houses, flats, or rooms. And so everybody is looking for new ways to keep busy. While I do have a significant number of incomplete open source projects to dedicate my time to, I also felt I needed something that was just for myself. So I decided to start what could be described as an “art project”.

A few months ago, I have bought for myself a Birch Books Lego set. It’s a lovely set, and I have a particular place in my heart for bookstores in general (despite having switched to ebooks many years ago). I wanted to take good pictures of it, particularly since I have a few macro lenses that should do it justice, but to do so I felt the need for lighting it up.

Now, you can buy light kits on Amazon for it (and for most other kits out there), but I wanted to do something. So I ended up buying a bunch of battery holders, white LEDs, and a box of assorted lego bricks for me to take a look at, for modifications. I also got lucky, and found a number of bricks the right color for the set.

And since I’m a geek and I love overkill solutions, I started thinking “can I make wire this to a microcontroller, and have it control the lights over time?” — Originally I considered keeping it aligned to the wallclock (as in, the time in the real world) but it turned out that it’s not that interesting to change so slowly — and it’s actually much harder. Having it cycle at a fixed speed is much easier, and with a couple of button controls you can do pretty much all you need.

As it turned out, I had most of the stuff I needed at home already: for Valentine’s Day, I ordered three heart-shaped LED kits on eBay (three because that’s how many they sold it as), that came with a microcontroller — a STC89C51, which are Intel 8051 compatible micros with 35 I/O ports. Back then I also decided I would like to try programming one for custom patterns, and bought a programmer/development board as well, and it came with another micro. While this seemed like a fairly niche micro, it made prototyping easy, since it’s a DIP micro, which I can just put on a breadboard.

The first problem I had with this was figuring out how to flash anything on the micro. What I found online suggested using a set of Windows tools that are only in Chinese. I then found another page, that suggests to just use SDCC and a tool called stcgal, which is Python command line tool that allows one-command programming of the micro. This worked great — the Special Function Registers are described in the datasheet, so it shouldn’t be hard to describe in a header.

So I turned to EAGLE first, and KiCad second, trying to figure out how I would layout what I need on a board, and couldn’t find the STC anywhere. And then I started thinking that maybe this is a clone of something else. A few Google searches later, I found the AT89S52 — which turns out to be exactly the same pinout and most likely the same registers as well. The STC89C51 is (mostly) a clone of the AT89S52. It does not appear to share the same programming protocol, and it actually appears to provide a list of additional capabilities and registers that the Microchip MCU does not have, but it does mean I can just write the code targeting the AT89S52, and be done with it.

Now let me remind you that I’m not particularly versed with electronics, so I’ll probably be making tons of mistakes throughout this experience. But I’ll also be trying to provide regular updates on how the project is going and, assuming I do make it to get it to work, I’ll be publishing all the source code, and any schematics I might end up drawing for the project.

I’m actually happy of having found out that the chip is just a Microchip/Atmel chip instead — because this increases not just the usefulness of me talking about the design, and opening up the sources, but also for myself as I would rather play with something that I can reuse later, rather than with some specific micro I just happen to have at home.

Also, I might end up designing a few alternatives for this anyway. The original draft of this blog post was written when I just started thinking this around, but I’m now putting a few more edits on it while having fleshed out some of my intentions for the project, and it might just be I’ll run with a number of different options around. We’ll see.

One green step forward, one green step backward (maybe)

Tonight I finally decided to stop receiving papermail stuff from Maxim. They already make their material (design guides, and the “Engineering Journal”) available online in PDF, but they haven’t added (yet) an RSS feed to know when they are updated. They have an e-mail option, but I’d rather avoid using that as it’s tremendously boring, for me, to receive more stuff in m mailbox.

Now that I’m using specto (I should add it to Portage by the way), I can just monitor the pages for changes and download the new PDFs as they are released. So I disabled the postal mail option. This also saves me from having to find space for the new releases. Unfortunately I’m not yet sure what to do with all these printed copies, as I don’t need them anymore (I rarely used them anyway, even though they came handy more than a couple of times). I tried asking a friend of mine, but he has less space than I do for them. I’ll probably trash them out to be recycled.

This is of course the step forward. The problem comes with the step backward.

As I said before I bought a PlayStation 3. One nice thing is that it comes with a preset Folding@Home client. I tried that to make sure that the place where I put the PS3 wasn’t going to make it overheat too much. Then I started to wonder. The research that Folding@Home is supposed to help is probably the kind of research that might just as well help me and my health problems. I use the PS3 during the late evening/early night, and I turn it down during the night, but since I wake up till I go to play some game, it would stay there sleeping. Why shouldn’t I run Folding@Home?

The reason why I shouldn’t is that it uses a lot of power to do that, about 280W, which a) is a cost b) is environmentally unfriendly. Now I’m debating with myself if it’s worth it. And if it’s worth to run Folding@Home on my workstation too. It’s not wasted power, as it’s employed for a worthy cause, but is it worthy enough not to consider this a step backward?

I’ll have to sleep quite a bit on this.