Glucometer Notes: GlucoRx Q

This article is going to be spending some time to talk about the meter, the manufacturer, and my reverse engineering. The more “proper” review of the device will be at the end, look for Review as title.

So despite having had no progress in months with my reverse engineering efforts started last year, I have not been ignoring my pastime of acquiring and reverse engineering the protocols of glucometers. And since I felt a bit bored, I went onto AliExpress Amazon UK and searched for something new to look at. Unfortunately, as usual, Amazon is becoming more and more a front for drop-ship sellers from AliExpress and similar sources, so most of the results are Sinocare. Eventually, I found the a GlucoRx Q, which looked interesting, given that I have already reverse engineered the GlucoRx Nexus.

Let’s start with a few words about the brand, because that’s one of those “not-so-secret secrets” that is always fun to remind people of: GlucoRx does not actually design, or manufacture, these devices or the strips they use. Instead, they “rebadge” white label glucometers. The Nexus meter I previously looked at was also marketed by the Italian company Menarini and the German (if I understand that correctly) Aktivmed, but was actually manufactured by TaiDoc, a Taiwanese company, as the TD-4277. I say this is not so secret because… it’s not a secret. The name of TaiDoc, and the original model number are printed on the label at the bottom of the device.

Now, some manufacturers doing this kind of white label rebadging don’t really have “loyalty” to a single manufacturer, so when I saw that the Q required different strips from the Nexus, I thought it would be a different manufacturer this time, which brought up my hopes that I would have a fun reverse engineering project on my hands, but that turned out to be disappointed very quickly, as the device said it’s a TaiDoc TD-4235B.

A quick search on Wikidata turned out to be even more interesting than I expected, and showed that GlucoRx markets more of the TaiDoc devices too, including the Nexus Voice TD-4280. Interesting that the company does not have an entity at the time of writing, and that even the retracted article names TaiDoc twice, but GlucoRx 45 times. To make a comparison with computers, it’s like writing an article about a Surface Book laptop and keep talking about the CPU as if it was Microsoft’s.

Anyway, even though the manufacturer was the same, I was still hoping to have some fun reverse engineering it. That was also disappointed: it took me longer to set up Windows 10 in a virtual machine than it took me to make glucometerutils download the data from the meter. It looks like TaiDoc has a fairly stable protocol, which honestly surprised me, as a lot of the manufacturers appear to just try to make it harder to support their devices.

Indeed this meter also shows up with a CP2110-compatible HID endpoint, which meant I could reuse my already-written chatter script to extract the back-and-forth between the Windows app and the device, and confirm that it was pretty much the same as the Nexus. The only differences were the model number (which is still issued in little-endian BCD), and a couple of unknown bytes that weren’t as constants as I thought they were. I also updated the documentation.

Why did I say “CP2110-compatible” instead of just CP2110? Well, here’s the thing: the GlucoRx Q shows up on the kernel logs (and in Windows hardware notifications) as “Silicon Laboratories C8051F34x Development Board”. Sounds like someone forgot to flash in the magic strings, and that pretty much “broke the magic” of which platform these devices are based on. Again, not the biggest secret, but it’s always interesting.

As the name might already have given away, the Silicon Labs C8051F34x is an 8-bit microcontroller based on the 8051. Yes, the same architecture I used for Birch Books, and for which I complained about the lack of good FLOSS support (since there doesn’t seem to be any institutional money to improve). It appears that these MCUs don’t just include the 8051 core but also a whole suite of components that do make them very versatile for the use on glucometers, namely fast and precise Analog-to-Digital Converters (ADCs). It also appears to have an integrated USB-to-serial through the same HID protocol as the CP2110.

So, yeah, I’m considering doing one run of the Birch Books controller based on this particular MCU out of curiosity, because they come in a package that is still hand-solderable and include already USB support. But that’s a project for another time.

So putting the reverse engineering (or rather, the no lack of need of it) aside, let’s take a quick look at the meter as a meter.


There is not much to say about this meter, because it’s your average “cheap” meter that you can find on online stores and pharmacies. I’m still surprised that most people don’t just get a free meter from one of the big names (in Italy, Ireland, and UK they are usually free — the manufacturers make their money on the strips), but this is not uncommon.

The GlucoRx Q is a fairly comfortable meter — unlike the Nexus, it’s “pill-shaped”, reminding me a lot of the Contour Next One. Unlike the Contour, this meter is not backlit, which means it’s not usable in dark places, but it also has a significantly bigger display.

The size does not compare entirely favourably with the FreeStyle Libre, part of the reason for which is that it runs off a single AAA battery — which makes it easy to replace, but puts some constraints on the size. On the bright side, the compartment door is captive to the main body so you don’t risk losing it if you were to change the battery on a moving vehicle, for instance.

The fitting of the strips is nice and solid, but I have to say getting blood onto them was quite harder than other meters, including the already mentioned Sinocare. Unlike other meters, there’s no lever to eject the strip without touching it — which makes me wonder once again if it’s a cultural reason for most of the Chinese meters to have it.

As usual for these reviews, I can’t really give an opinion on the accuracy — despite having spent many years looking at glucometers, I haven’t figured out a general way test these for accuracy. Most meters appear to have a calibration solution, but that’s not mean tot be compatible between devices, so I have no way to compare them to each other.

I don’t see any particular reason for getting or avoiding this particular device, to be honest. It seems to just be working fine, but at the same time I get other meters for free, and the strips are covered by NHS for me and all the diabetics — if anyone has any other reason on why to prefer this meter, I’d love to hear about it.

CP2110 Update for 2019

Update 2021-03-18: Hello from the future! If you’re reading this blog post, and you’re interested in using the Silicon Labs CP2110 serial adapter, you may be interested to know that it’s fully supported by pyserial 3.5 and later, on Linux and Windows.

The last time I wrote about the CP2110 adapter was nearly a year ago, and because I have had a lot to keep me busy since, I have not been making much progress. But today I had some spare cycles and decided to take a deeper look starting from scratch again.

What I should have done properly since then would have been procuring myself a new serial dongle, as I was not (and still am) not entirely convinced about the quality of the CH341 adapter I’m using. I think I used that serial adapter successfully before, but maybe I didn’t and I’ve been fighting with ghosts ever since. This counts double as, silly me, I didn’t re-read my own post when I resumed working on this, and been scratching my head at nearly exactly the same problems as last time.

I have some updates first. The first of which is that I have some rough-edged code out there on this GitHub branch. It does not really have all the features it should, but it at least let me test the basic implementation. It also does not actually let you select which device to open — it looks for the device with the same USB IDs as I have, and that might not work at all for you. I’ll be happy to accept pull requests to fix more of the details, if anyone happen to need something like this too — once it’s actually in a state where it can be merged, I’ll be doing a squash commit and send a pull request upstream with the final working code.

The second is that while fighting with this, and venting on Twitter, Saleae themselves put me on the right path: when I said that Logic failed to decode the CP2110→CH341 conversation at 5V but worked when they were set at 3.3V, they pointed me at the documentation of threshold voltage, which turned out to be a very good lead.

Indeed, when connecting the CP2110 at 5V alone, Logic reports a high of 5.121V, and a low of ~-0.12V. When I tried to connect it with the CH341 through the breadboard full of connections, Logic reports a low of nearly 3V! And as far as I can tell, the ground is correctly wired together between the two serial adapters — they are even connected to the same USB HUB. I also don’t think the problem is with the wiring of the breadboard, because the behaviour is identical when just wiring the two adapters together.

So my next step has been setting up the BeagleBone Black I bought a couple of years ago and shelved into a box. I should have done that last year, and I would probably have been very close to have this working in the first place. After setting this up (which is much easier than it sounds), and figuring out from the BeagleBoard Wiki the pinout (and a bit of guesswork on the voltage) of its debug serial port, I could confirm the data was being sent to the CP2110 right — but it got all mangled on print.

The answer was that the HID buffered reads are… complicated. So instead of deriving most of the structure from the POSIX serial implementation, I lifted it from the RFC2217 driver, that uses a background thread to loop the reads. This finally allowed me to use the pySerial miniterm tool to log in and even dmesg(!) the BBB over the CP2110 adapter, which I consider a win.

Tomorrow I’ll try polishing the implementation to the point where I can send a pull request. And then I can actually set up to look back into the glucometer using it. Because I had an actual target when I started working on this, and was not just trying to get this to work for the sake of it.

Updates on Silicon Labs CP2110

Update 2021-03-18: Hello from the future! If you’re reading this blog post, and you’re interested in using the Silicon Labs CP2110 serial adapter, you may be interested to know that it’s fully supported by pyserial 3.5 and later, on Linux and Windows.

One month ago I started the yak shave of supporting the Silicon Labs CP2110 with a fully opensource stack, that I can even re-use for glucometerutils.

The first step was deciding how to implement this. While the device itself supports quite a wide range of interfaces, including a GPIO one, I decided that since I’m only going to be able to test and use practically the serial interface, I would at least start with just that. So you’ll probably see the first output as a module for pyserial that implements access to CP2110 devices.

The second step was to find an easy way to test this in a more generic way. Thankfully, Martin Holzhauer, who commented on the original post, linked to an adapter by MakerSpot that uses that chip (the link to the product was lost in the migration to WordPress, sigh), which I then ordered and received a number of weeks later, since it had to come to the US and clear customs through Amazon.

All of this was the easy part, the next part was actually implementing enough of the protocol described in the specification, so that I could actually send and receive data — and that also made it clear that despite the protocol being documented, it’s not as obvious as it might sound — for instance, the specification says that the reports 0x01 to 0x3F are used to send and receive data, but it does not say why there are so many reports… except that it turns out they are actually used to specify the length of the buffer: if you send two bytes, you’ll have to use the 0x02 report, for ten bytes 0x0A, and so on, until the maximum of 63 bytes as 0x3F. This became very clear when I tried sending a long string and the output was impossible to decode.

Speaking of decoding, my original intention was to just loop together the CP2110 device with a CH341 I bought a few years ago, and have them loop data among each other to validate that they work. Somehow this plan failed: I can get data from the CH341 into the CP2110 and it decodes fine (using picocom for the CH341, and Silicon Labs own binary for the CP2110), but I can’t seem to get the CH341 to pick up the data sent through the CP2110. I thought it was a bad adapter, but then I connected the output to my Saleae Logic16 and it showed the data fine, so… no idea.

The current status is:

  • I know the CH341 sends out a good signal;
  • I know the CP2110 can receive a good signal from the CH341, with the Silicon Labs software;
  • I know the CP2110 can send a good signal to the Saleae Logic16, both with the Silicon Labs software and my tiny script;
  • I can’t get the CH341 to receive data from the CP2110.

Right now the state is still very much up in the air, and since I’ll be travelling quite a bit without a chance to bring with me the devices, there probably won’t be any news about this for another month or two.

Oh and before I forget, Rich Felker gave me another interesting idea: CUSE (Character Devices in User Space) is a kernel-supported way to “emulate” in user space devices that would usually be implemented in the kernel. And that would be another perfect application for this: if you just need to use a CP2110 as an adapter for something that needs to speak with a serial port, then you can just have a userspace daemon that implements CUSE, and provide a ttyUSB-compatible device, while not requiring short-circuiting the HID and USB-Serial subsystems.

Yak Shaving: Silicon Labs CP2110 and Linux

Update 2021-03-18: Hello from the future! If you’re reading this blog post, and you’re interested in using the Silicon Labs CP2110 serial adapter, you may be interested to know that it’s fully supported by pyserial 3.5 and later, on Linux and Windows.

One of my favourite passtimes in the past years has been reverse engineering glucometers for the sake of writing an utility package to export data to it. Sometimes, in the quest of just getting data out of a meter I end up embarking in yak shaves that are particularly bothersome, as they are useful only for me and no one else.

One of these yak shaves might be more useful to others, but it will have to be seen. I got my hands on a new meter, which I will review later on. This meter has software for Windows to download the readings, so it’s a good target for reverse engineering. What surprised me, though, was that once I connected the device to my Linux laptop first, it came up as an HID device, described as an “USB HID to UART adapter”: the device uses a CP2110 adapter chip by Silicon Labs, and it’s the first time I saw this particular chip (or even class of chip) in my life.

Effectively, this device piggybacks the HID interface, which allows vendor-specified protocols to be implemented in user space without needing in-kernel drivers. I’m not sure if I should be impressed by the cleverness or disgusted by the workaround. In either case, it means that you end up with a stacked protocol design: the glucometer protocol itself is serial-based, implemented on top of a serial-like software interface, which converts it to the CP2110 protocol, which is encapsulated into HID packets, which are then sent over USB…

The good thing is that, as the datasheet reports, the protocol is available: “Open access to interface specification”. And indeed in the download page for the device, there’s a big archive of just-about-everything, including a number of precompiled binary libraries and a bunch of documents, among which figures AN434, which describe the full interface of the device. Source code is also available, but having spot checked it, it appears it has no license specification and as such is to be considered proprietary, and possibly virulent.

So now I’m warming up to the idea of doing a bit more of yak shaving and for once trying not to just help myself. I need to understand this protocol for two purposes: one is obviously having the ability to communicate with the meter that uses that chip; the other is being able to understand what the software is telling the device and vice-versa.

This means I need to have generators for the host side, but parsers for both. Luckily, construct should make that part relatively painless, and make it very easy to write (if not maintain, given the amount of API breakages) such a parser/generator library. And of course this has to be in Python because that’s the language my utility is written in.

The other thing that I realized as I was toying with the idea of writing this is that, done right, it can be used together with facedancer, to implement the gadget side purely in Python. Which sounds like a fun project for those of us into that kind of thing.

But since this time this is going to be something more widely useful, and not restricted to my glucometer work, I’m now looking to release this using a different process, as that would allow me to respond to issues and codereviews from my office as well as during the (relatively little) spare time I have at home. So expect this to take quite a bit longer to be released.

At the end of the day, what I hope to have is an Apache 2 licensed Python library that can parse both host-to-controller and controller-to-host packets, and also implement it well enough on the client side (based on the hidapi library, likely) so that I can just import the module and use it for a new driver. Bonus points if I can sue this to implement a test fake framework to implement the tests for the glucometer.

In all of this, I want to make sure to thank Silicon Labs for releasing the specification of the protocol. It’s not always that you can just google up the device name to find the relevant protocol documentation, and even when you do it’s hard to figure out if it’s enough to implement a driver. The fact that this is possible surprised me pleasantly. On the other hand I wish they actually released their code with a license attached, and possibly a widely-usable one such as MIT or Apache 2, to allow users to use the code directly. But I can see why that wouldn’t be particularly high in their requirements.

Let’s just hope this time around I can do something for even more people.